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Zamiast wstępu
W dniach 26–28 marca bieżącego roku, w położonym 
nad rzeką Jangcy chińskim mieście Nanjing, pod ha-
słem „Jeden świat – jedno odlewnictwo ciśnieniowe”, 
miał miejsce ważny 20. Kongres Odlewnictwa Ciśnie-
niowego [1]. Uczestniczyło w nim ponad 600 uczest-
ników z Chin, Europy, Ameryki Północnej i całej Azji 
w celu wymiany spostrzeżeń na temat najnowszych 
osiągnięć technologicznych i strategicznych trendów 
w światowym odlewnictwie ciśnieniowym. Poruszane 
w trakcie kongresowych obrad kwestie zdominowały 
następujące problemy:
•	 Wytwarzania wyrobów z magnezu i jego stopów.
•	 Transformacje technologiczne w odlewnictwie.
•	 Filozofia „Megaodlewania” i integracja elementów 

łączonych, w tym odlewów (typowy przykład: za-
miast kilku mniejszych odlewów wykonujemy je-
den zintegrowany odlew).

•	 Innowacje w e-mobilności, w tym rola odlewnic-
twa.

•	 Dominacja Chin jako światowego lidera w dziedzi-
nie odlewnictwa (gospodarze z dumą podkreślali 
fakt pracy w chińskich odlewniach grupy 500 cer-
tyfikowanych, wysokokwalifikowanych specjali-
stów).

Raptem dwa miesiące później, w dniach 19–21 maja 
2025 r., nad pięknym polskim Bałtykiem, w Gdańsku, 
odbyła się doroczna STOP-owska, już XVII, Między-
narodowa Konferencja Naukowa „Innowacje w Od-
lewnictwie Ciśnieniowym” [2]. Toutes proportions 
gardées, czyli  zachowując wszelkie proporcje, wiele 
z poruszanych w Chinach tematów znalazło odbicie 
także i w wystąpieniach uczestników Konferencji, or-
ganizowanej przez Oddział Łódzki STOP wraz z ZG 
STOP [3]. 
Przedstawiamy Państwu autorską wersję naszej pre-
zentacji, przygotowanej jeszcze przed chińskim Kon-
gresem, która, można rzec, zawiera tożsame treści, co 
odnotowujemy z niejaką zawodową satysfakcją jako 
wyraz naszych profesjonalnych odczuć i przewidy-
wań, pozostających w pełnej zgodzie z aktualnymi 
światowymi trendami w rozwoju odlewania pod ci-
śnieniem zewnętrznym.  
Pierwsza część artykułu odnosząca się do tematyki 
poruszanej podczas obu wydarzeń została opubliko-
wana w Przeglądzie odlewnictwa 7–8/2025. Poniżej 
prezentujemy II część artykułu. 
Dlaczego odlewy ze stopów magnezu?
Ogólnie rozwój magnezu i jego stopów można 
umownie podzielić na cztery etapy (rys. 14) [17].
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Etap 1. W 1808 roku angielski chemik Humphry Davy 
wyizolował magnez metaliczny, ale dopiero w 1828 
roku Antoine-Alexander Bussy wyizolował czysty Mg 
z bezwodnego chlorku magnezu MgCl

2
. Już w latach 

80. XIX w. Niemcy założyły pierwszą na świecie fabry-
kę elektrolitycznego Mg, w której rozpoczęto przemy-
słową produkcję jego stopów. W latach trzydziestych 
zeszłego wieku Niemcy pierwsi zastosowali stop Mg  
w przemyśle samochodowym. Kilka lat później ówcze-
sny rząd radziecki wprowadził stop Mg do produkcji sa-
molotów, a Anglia po raz pierwszy zastosowała stop Mg  
w obudowie skrzyni biegów motocykla. Produkcja 
stopu Mg osiągnęła w tym okresie 1200 ton/rok.
Etap 2. Podczas II wojny światowej produkcja stopów 
Mg gwałtownie wzrosła w związku z produkcją sprzę-
tu wojskowego. W okresie powojennym, po 1946 
roku, rozwój stopów Mg zaczął się stabilizować.
Etap 3. Do lat 90-tych XX wieku, z uwagi na rosną-
cą emisję spalin silników samochodowych, zużycia 
energii i polityki ochrony środowiska, kraje na całym 
świecie zaczęły zwracać uwagę na rozwój i badania 
magnezu i jego stopów.
Etap 4. W naszym stuleciu, wskutek osiągnięcia  
doskonałych właściwości materiałowych, zastosowa-
nie stopów Mg w nadwoziach i częściach zamknię-
tych szybko rosło, szczególnie w pojazdach czysto 
elektrycznych i hybrydowych. Zwłaszcza w ciągu 
ostatnich 20 lat główni producenci „oryginalnego wy-
posażenia” OEM (Original equipment manufacturer) 
zwiększali wykorzystanie stopów Mg w samochodach, 
w wyniku czego na rynku pojawiło się wiele części ze 
stopów magnezu.
W odniesieniu do aktualnej sytuacji, wielkość global-
nego rynku stopów magnezu została wyceniona na 
1,7 mld USD w 2022 i przewiduje się, że osiągnie war-
tość 7,0 mld USD do 2031 ze skumulowanym rocz-
nym wskaźnikiem wzrostu CAGR (Compound Annual 
Growth Rate) na poziomie 16,8% w okresie do 2031 
[18].
Według zeszłorocznego raportu firmy Mordor Intel-
ligence [18] wzrost popytu na pojazdy elektryczne  
i zmiana preferencji konsumentów skłoniły producen-
tów samochodów do zastąpienia cięższych kompo-
nentów lekkimi elementami, wykonanymi ze stopów 
aluminium i właśnie stopów magnezu. Główni pro-
ducenci pojazdów wykorzystują stopy magnezu do 
produkcji takich elementów, jak obudowy lusterek, ko-
lumny kierownicze, obudowy poduszek powietrznych 
kierowcy, ramy siedzeń i obudowy deski rozdziel-
czej. Rosnąca tendencja do zwiększania wydajności 
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Rys. 14. Schemat historii rozwoju tworzyw na bazie magnezu w umownym podziale na cztery etapy [17]

Rys. 15. Tempo wzrostu rynku odlewów ciśnieniowych ze stopów magnezu przeznaczonych dla prze-
mysłu samochodowego w latach 2022–2027 w zależności od rejonu świata (im ciemniejszy kolor, tym 
wyższe tempo wzrostu) [18]  

akumulatorów i procesu spalania paliwa, wraz z po-
pytem na lepsze osiągi, spowodowała wzrost zainte-
resowania stopami magnezu odlewanymi ciśnieniowo 
(planowany wzrost wielkości produkcji odlewów ci-
śnieniowych ze stopów magnezu z 4,85 mld USD  
w 2025 do 7,68 mld USD w 2030). Stopy magnezu 
charakteryzują się doskonałym połączeniem wła-
ściwości mechanicznych i najwyższym stosunkiem 
wytrzymałości do masy spośród wszystkich stopów 
metali konstrukcyjnych.
W okresie prognozy 2025–2030, to kraje Azji i Pacyfi-
ku będą dominować na rynku, albowiem właśnie tam 
działają duże przedsiębiorstwa produkcyjne, co może 
stworzyć okazję dla rozwoju produkcji odlewów ze 
stopów magnezu na części samochodowe (rys.15). 

W Europie liderem w produkcji odlewów ze stopów 
magnezu są Niemcy (ponad 9000 ton), następnie 
Włochy (2500 t) i Wielka Brytania (1500 t) (rys. 16). Za-
uważalne ilości odlewów ze stopów magnezu produ-
kuje się w Turcji, Czechach i na Węgrzech. 
W Polsce, oprócz krakowskiej firmy NeoCast Tech-
nologie Metali Lekkich (www.neocast.eu) i Aludyne  
z Bieska Białej, produkcja odlewów magnezowych jest 
w zaniku.
Wzrastające zainteresowanie wytwarzaniem wyro-
bów ze stopów magnezu jest spowodowane ich uni-
katowymi właściwościami, które w sposób niemalże 
perfekcyjny spełniają aktualne kryteria szybkiego 
rozwoju przemysłu samochodowego (ogólnie ko-
munikacji naziemnej), awiacji, przemysłu obronnego 
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i potrzeb związanych z opanowywaniem przestrzeni 
kosmicznej. Nie bez znaczenia pozostaje ta okolicz-
ność, że magnez zajmuje 8 miejsce pod względem 
występowania na Ziemi (około 3% Mg zawiera skorupa 
ziemska) i jest na 3 miejscu występowania w wodzie 
morskiej (0,12%). Magnez nie wykazuje właściwości 
toksycznych, biorąc udział w 300 reakcjach bioche-
micznych; dla przykładu, ciało ludzkie wymaga do-
starczenia około 400 mg magnezu dziennie. 
Do najbardziej atrakcyjnych właściwości magnezu  
i jego stopów można zaliczyć [20]:
1.	 Niezwykłą lekkość: magnez jest najlżejszym me-

talem konstrukcyjnym, tylko 1,7 razy cięższym od 
wody.

2.	 Wystarczającą wytrzymałość doraźna; wytrzyma-
łość właściwa magnezu jest 2,5 razy większa niż 
stopów na bazie żelaza.

3.	 Nowoczesne stopy magnezu już posiadają pod-
wyższoną odporność korozyjną, co do niedawna 

Rys. 16. Główni europejscy producenci odlewów ze stopów magnezu (wielkość produkcji podano  
w tonach) w odniesieniu do 2023 roku [19]

Rys. 17. Tommy Milton, zwycięzca wyścigu Indy 500 
za kierownicą samochodu Frontenac, w którego 
silniku zamontowano magnezowe tłoki Dowmetal. 
Taki samochód w 1921 roku mógł rozwijać prędkość 
ponad 140 km/godz. [21]

Rys. 18. Zastosowanie stopów magnezu w drzwiach samochodowych: 
(a) Aston Martin Vanquish S (z wewnętrznymi odlewanymi drzwiami 
bocznymi); (b) Jeep Wrangler 2018, wyprodukowany z tylną klapą z Mg; 
(c) Chrysler Pacifica przedstawiający zespół klapy tylnej z wewnętrznym 
odlewem Mg; (d) tył modelu T Mercedes-Benz Klasy E z hybrydową tylną 
klapą ze stopu Mg-Al; (e) wewnętrzna rama drzwi Daimler-Chrysler SL 
Roadster; (f) koncepcja Forda: wewnętrzne drzwi z odlewanego ciśnie-
niowo stopu Mg o otwartej architekturze; (g) zintegrowane wewnętrzne 
drzwi Mg z odlewu Mg (część projektu GMC); (h) wewnętrzne super 
cienkie drzwi z  ultralekkiego stopu Mg [17]

stanowiło barierę w ich szer-
szym zastosowaniu.

4.	 Stopy magnezu mają wysoką 
zdolność tłumienia energii, wi-
bracji (DE – excellent damping 
capacity).

5.	 Stopy magnezu są doskonałym 
materiałem na obudowy urzą-
dzeń elektronicznych, chro-
niąc owe urządzenia przed 
promieniowaniem niejonizu-
jącym (ESE – electromagnetic 
shielding effectiveness).

6.	 Nowe stopy magnezu mogą 
pracować w temperaturze na-
wet do 350°C, dobrze przewo-
dząc ciepło.

7.	 Są wystarczająco dobrze obra-
bialne skrawaniem.  

8.	 Mają zdolność samoanihilacji, 
czyli ulegają samozniszczeniu 
w przypadku konieczności np. 
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bezpiecznej utylizacji części magnezowych po-
chodzących z przestrzeni okołoziemskiej).

9.	 Są łatwe w recyklingu.
10.	Są nietoksyczne, biodegradowalne; wykazują 

optymalną kompatybilność biomechaniczną, po-
siadając charakterystyki zbliżone do cech ludzkiej 
kości.

11.	Wytrzymałość właściwa ultralekkiego i wysokowy-
trzymałego stopu Mg-14Li-7Al (LA147, %wag.) wy-
nosi około 350 Nm/kg (czyli 350 metrów!), co nie 
ma sobie równych w przypadku wszystkich innych 
stopów inżynieryjnych [17].

Stopy magnezu wykazują zdolność do tłumienie 
drgań około 15 razy większą niż w przypadku stopów 
aluminium i 60 razy większą niż w przypadku stali [17].
Konwencjonalne stopy odlewnicze Mg, w tym Mg-Al
-Zn (AZ), Mg-Al-Mn (AM) i Mg-Al-RE (AE), są szeroko 
stosowane ze względu na doskonałą lejność i niski 
koszt, chociaż, póki co, poziom ich wytrzymałości jest 
niższy w porównaniu z odlewniczymi stopami Al [21].
Do zastosowań związanych z odlewaniem ciśnienio-
wym stopy Mg-Al-Ca wykazują znacznie lepszą gra-
nicę plastyczności przy rozciąganiu oraz wydłużenie 
i odporność na pełzanie lepsze niż inne stopy Mg [21].
Stopy Mg-Ce-Mn charakteryzują się wysoką plastycz-
nością i wystarczającą wytrzymałością. Stopy Mg-Al-
Sn także mogą być utwardzane wydzieleniowo. Stopy 
te można dalej optymalizować pod kątem zwiększe-
nia lejności i odporności na korozję [21].
Dodatek Gd do Mg może prowadzić do uzyskania 
istotnego efektu umacniania, dzięki czemu stop Mg
-8Gd-3Y-0,5Zr2 (GW83K) osiąga wyjątkową granicę 
plastyczności (236 MPa) i wytrzymałość do 350 MPa 
po obróbce T6 [21].
Według dostępnych źródeł literaturowych, pierwsze 
zastosowanie odlewów ze stopów magnezu na tło-
ki silników spalinowych Dowmetal miało miejsce już  
w 1921 roku (rys. 17) w trakcie dorocznego wyścigu sa-
mochodowego, rozgrywanego na torze Indianapolis 
Motor Speedway w mieście Speedway (Indiana, USA). 
Uczestnicy tego rozgrywanego od 1911 roku wyścigu, 
odbywającego się w ostatnią majową niedzielę, mieli 
do pokonania dystans 500 mil (800 km) w postaci 200 
okrążeń toru. Wieloletnią tradycją tego wyścigu, zna-

nego jako Indy 500 (Indianapolis 
500) było i jest to, że zwycięzca na 
podium zamiast butelki szampana, 
otrzymuje butelkę mleka (sic!).
Współcześnie odlewy magne-
zowe wytwarzane ze stanu cie-
kłego, w tym odlewy ciśnieniowe, 
występują w przemyśle samocho-
dowym (np. w postaci drzwi – ry-
sunek 18, innych części – rysunek 
19), elektronice, lotnictwie (ogó-
łem komunikacji powietrznej) oraz 
przemyśle obronnym.
Thixomolding – konie poszły 
w las!
Drogą rządowych regulacji chiński 

Rys. 19. Odlewy ciśnieniowe ze stopów magnezu znalazły już zastoso-
wanie w samochodach jako części dachu, pokrywy bagażnika, zderza-
ków i wsporników [17]

przemysł automotive jest zachęcany do znacznego 
zwiększenia ilości części ze stopów Mg w konstrukcji 
samochodu, co zapewni znacznie zmniejszenie masy 
pojazdu (np. samochody osobowe tradycyjne do 25% 
redukcji masy do roku 2035, a samochody elektryczne 
aż do 35%) (rys. 20).
Uważa się, że realizacja tak ambitnej strategii w przy-
padku głównego światowego producenta odlewów 
nie będzie możliwa bez szerszego zastosowania no-
wych technologii i materiałów, w tym SSM, szczegól-
nie technologii thixomolding oraz nowych tworzyw 
ultralekkich, zwłaszcza na bazie stopów magnezu.
W ujęciu ogólnym, technologia thixomolding, wy-
wodząca się z praktyki wytwarzania wyrobów z mas 
plastycznych, która na dzień dzisiejszy znalazła sto-
sowanie jedynie do tworzyw na bazie Mg, polega na 
dawkowaniu do zbiornika stosownego urządzenia 
(ślimakowej prasy hydraulicznej) uprzednio przygoto-
wanych kawałków (chips) wybranego monolityczne-
go stopu magnezu, mieszaniny stopów lub kawałków 
komponentów kompozytu na bazie magnezu (kawałki 
magnezu lub stopu magnezu plus wybrana faza cera-
miczna) (rys. 20).  
Tak przygotowany materiał wsadowy trafia do wstęp-
nego podajnika śrubowego a następnie do głównego 
podajnika śrubowego, który jest sukcesywnie pod-
grzewany tym intensywniej, im wsad znajduje się bliżej 
wejścia do dyszy wtryskowej, prowadzącej do wnęki 
formy w taki sposób, aby wsad uzyskał stan ciekło-sta-
ły, umożliwiający jego wprowadzenie pod ciśnieniem 
do formy i tym samym ukształtowanie gotowego wy-
robu (analogiczne jak w przypadku klasycznego od-
lewania ciśnieniowego). Całość procesu realizowana 
jest w ochronie gazów obojętnych, najczęściej argo-
nu i nie wymaga stosowania gazów aktywnych, często 
szkodliwych, w tym sześciofluorku siarki SF

6
.

Obrazowo rzecz ujmując, różnica pomiędzy techno-
logią rheocasting i thixocasting polega na sposobie 
generowania zmian temperatury procesów (vide ry-
sunek 20 po lewej stronie na górze rysunku). W przy-
padku technologii rheocasting wsad ze stanu ciekłego 
jest schładzany do stanu ciekło-stałego; w przypadku 
technologii thixocasting stan wyjściowy wsadu odnosi 
się do temperatury pokojowej.
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Ostatnie lata przyniosły burzliwy rozwój technolo-
gii thixocasting, przejawiający się w konstrukcji no-
wej generacji gigamaszyn ciśnieniowych, głównie 
w Chinach. Warto zauważyć, że początki rozwoju 
technologii thixocasting zawiązane są z firmami 
Husky (Kanada) oraz JSW (Japonia). Wymienionym 
firmom nie udało się szerzej tej technologii w jej 
początkach rozpropagować i wróciła ona do głów-
nego nurtu rozwoju, gdy rząd chiński zaczął wspie-
rać przetwórstwo stopów magnezu. Wtedy jedną  
z pierwszych firm, która niezwykle intensywnie roz-
poczęła działalność w tym właśnie kierunku była 
firma Yizumi.  
Firma Haitian wprowadziła już na rynek maszynę  
o sile zwierania 3600 ton, wykorzystywaną głównie 
do masowej produkcji felg i poprzecznych belek sa-
mochodowych (CCBs – cross car beams) o masie 6,1 
kg i długości 1,4 m (rys. 21). Branża poczyniła znaczne 
postępy w doskonaleniu technologii dzięki maszynie  
o sile zwierania 3000 ton z podwójnym wtryskiem 
(Haitian) oraz modelom 3600 T (Haitian) i 4000T 
(Bole).

W ciągu ostatnich dwóch lat nastąpił gwałtowny rozwój 
większych maszyn: 4000 T (TPI – kraj) oraz 3600 T (Haitian) 
z możliwością przekształcenia istniejących maszyn ciśnie-
niowych na maszyny do tiksomoldingu.
Obecnie tytuł największej działającej maszyny Thixomol-
ding należy do maszyny o sile zwierania 4000 ton, której 
masa wtrysku wynosi 17 kg (MTX 4000 firmy Bole) (rys. 22).
Największa na świecie maszyna o sile zwierania 7000 
ton i masie wtrysku do 25 kg będzie gotowa do poło-
wy bieżącego roku (Haitian Metal), a maszyna 6000 T 
z masą wtrysku 30 kg (Bole) i 5000 T (Yizumi) są pla-
nowane do zainstalowania pod koniec 2025.
Jak już uprzednio wspomniano, typowa struktura 
odlewów SSM – na przykładzie stopów magnezu – 
charakteryzuje się globularyzacją głównego skład-
nika strukturalnego – roztworu stałego Mg (rys. 23). 
Ten rodzaj struktury gwarantuje podwyższony poziom 
właściwości wytrzymałościowych, nawet wyższy od 
wytrzymałości odlewów prasowanych w stanie cie-
kłym, technologia wykonywania których uchodziła 
za technologię odlewniczą, gwarantującą najwyższy 
osiągalny poziom właściwości.

Rys. 21. Schemat procesu thixocasting w przypadku wytwarzania wyrobów z tworzyw na bazie magne-
zu (dzięki uprzejmości Helmholtz Zentrum Geeshacht Centre for Materials and Coastal Research oraz 
[24])

Rys. 20. Chińska mapa drogowa, dotycząca redukcji masy w pojazdach (od góry): samochody osobowe 
silnikowe, samochody osobowe elektryczne, samochody u dużej ładowności, traktory, autobusy [22]
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Możliwości dodatkowego umocnienia stopów ma-
gnezu kryją się w zastosowaniu zbrojenia osnowy ma-
gnezowej fazą ceramiczną, np. SiC (tab. 3) [27].
Odlewy ze stopów magnezu w przemyśle obron-
nym
Odlewnictwo metali od tysięcy lat aż po dzień dzisiej-
szy służy ludzkości w zapewnieniu jej bezpieczeństwa 
(rys. 25). 
Według informacji, pozyskanej ze źródeł rządowych  
w Polsce, która ma największą w Unii Europejskiej fa-
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Rys. 22. Tiksotropowy odlew poprzecznej belki samochodowej (CCB) (a) i gotowa część zamontowana  
w samochodzie [25, 26]

Rys. 23. Maszyna BOLE MTX4000D o sile zwierania 4 000 ton do technologii thixomoulding stopów magnezu 
oraz odlewy magnezowe wykonane na maszynie o sile zwierania 1600 ton. Maksymalna masa odlewów Mg 
wynosi 17 kg

Rys. 24. Mikrostruktura odlewu ze stopu MgRe-
3Zn1Y1,4% wag., wytworzonego technologią new 
rheocasting RSC (rheo-squeeze casting – RSC)  
w zależności od przyłożonego ciśnienia prasowania: 
odlew grawitacyjny (a), zakrzepły pod ciśnieniem 50 
MPa (b), 100 MPa (c) oraz 200 MPa (d) [27]

brykę dronów, otwiera się perspektywa powstania 
dolin dronowych, opartych na wspólnych polsko-ukra-
ińskich technologiach, uwzględniających fakt, że Ukraina  
w zeszłym roku wyprodukowała 4,5 mln dronów, w tym 
autonomicznych aparatów latających o wysokich, do tej 
pory niespotykanych parametrach użytkowych [30]. 
Przykładowa materiałowa mapa konstrukcji trady-
cyjnego drona obejmuje ramę i obudowę, gdzie 
stosowane są stopy aluminiowe do przeróbki pla-
stycznej w gatunku 6061 i 7075, elementy nośne,  
w tym ramiona do mocowania śmigieł (Ti6Al4V, włók-
na węglowe), łożyska i wały silnikowe (stal nierdzewna 
w gatunku 440C), części układu elektrycznego (czy-
sta miedź i stopy Cu), śruby i elementy montażowe 
(stal nierdzewna, anodowane aluminium). Zasto-
sowanie lekkich materiałów do wytwarzania części 
metodami ciekło-fazowymi, odkrywa ogromną szan-
sę dla odlewnictwa stopów aluminium i magnezu, 
zwłaszcza technologii odlewania pod ciśnieniem,  
w tym metod SSM, gdzie oprócz typowych stopów 
odlewniczych, również stopy do przeróbki plastycznej 
mogą znaleźć zastosowanie, szczególnie w postaci 
technologii podwójnego zastosowania (dual use tech-
nology). To może być istotne wyzwanie dla krajowych 
odlewni w pomyślnej realizacji konwersji konstruk-
cji, materiałów i technologii dla części odlewanych  
w wymagającym przemyśle obronnym. 
Z powodzeniem podejmowane są pierwsze próby 
zastosowania stopów magnezu na ramy i inne części 
dronów [31].
Wydział Odlewnictwa AGH we współpracy z Wydzia-
łem Inżynierii Materiałowej i Ceramiki, Akademickim 
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Centrum Materiałów i Nanotechno-
logii, odlewnią NeoCast Technolo-
gie Metali Lekkich, w porozumieniu 
z firmami Frech Polska i IDRA Srl.  
z Włoch oraz Thompson Aluminum 
Casting Company z USA, jeszcze  
w styczniu 2024 zgłosił na konkurs 
do Narodowego Centrum Badań  
i Rozwoju propozycję badawczą 
pod tytułem „Zastosowanie kon-
wersji materiałowo-technologicz-
nej do opracowania innowacyjnych 
technologii z udziałem fazy cie-
kłej do wytwarzania części maszyn  
i urządzeń służących ochronie in-
dywidualnej (MagMilPol)” w grupie 
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Tabela 2
Właściwości wytrzymałościowe odlewów magne-
zowych grupy AZ (wytrzymałości na rozciąganie, 
granica plastyczności i wydłużenie), wyznaczone 
na próbkach wycinanych z odlewów ciśnieniowych 
(HPDC), metodami SSM (thixomolding, new rheoca-
sting i jego odmianami (TBR, RDC, FCS, LAO), w tym 
po odlewaniu grawitacyjnym, w stanie lanym oraz po 
obróbce cieplnej (T4) [27]

Tabela 3
Właściwości mechaniczne kompozytu MgZn6/20% obj. SiC (cząsteczki 
SiC o średnicy 3,3 µm) na przykładzie modułu Younga, granicy pla-
styczności, wytrzymałości na rozciąganie i plastyczności w porównaniu 
z monolitycznym stopem Mg6ZnZr. Badane materiały poddano obrób-
ce cieplnej [28]

projektów PERUN-1 z zakresu obronności i bezpie-
czeństwa państwa (DOB). Projekt zakłada opracowanie 
i optymalizację technologii wytwarzania ultralekkich 
stopów magnezu do produkcji komponentów do 
przenośnych dronów wielozadaniowych, elementów 
broni palnej i/lub obudowy przenośnej radiostacji. Prio-
rytetowe korzyści obejmują redukcję masy, doskonałą 
zdolność do tłumienia drgań oraz wysoką skuteczność 
ekranowania elektromagnetycznego, co przyczyni 
się do zwiększenia ochrony indywidualnej żołnierzy  
i poprawy ich mobilności na polu walki. Cele projektu 
mają być osiągnięte poprzez efektywne wykorzysta-
nie istniejących technologii wytwarzania do nowego 
tworzywa, mało rozpoznanego na rynku krajowym. 
Wprowadzenie innowacyjnych procesów, zwłaszcza 
związanych z fazą ciekłą, pozwoli na znaczący wzrost 
poziomu technologicznego w dziedzinie obronności. 
Projektowane technologie, w tym technologie związa-
ne z odlewaniem pod ciśnieniem i SSM, są kierowane 
do krajowych prywatnych przedsiębiorców oraz pań-
stwowych spółek związanych z militarnym sektorem 
bezpieczeństwa, dostarczających niezbędny sprzęt 
dla polskiego przemysłu zbrojeniowego. W aspekcie 
merytoryczno-organizacyjnym i logistycznym, projekt 
przewidywał utworzenie w Polsce Centrum Magnezu, 
jako nieformalnego związku organizacji akademic-
kich, naukowych, badawczych, stowarzyszeniowych  
i producenckich, działających w zakresie teorii i prak-
tyki wyrobów magnezowych oraz organizacji ich 
wdrożeń w przemyśle, zwłaszcza obronnym. 
Jednym z przejawów aktywności aplikacyjnej gru-
py przyszłych wykonawców projektu był ich udział  
w dniach 3–6 września 2024 r. w Międzynarodowym 
Salonie Przemysłu Obronnego (MSPO) w Kielcach 
(rys. 26). 
W części wystawienniczej zaprezentowano sze-
reg odlewów ze stopów magnezu, w tym wykonane  
w firmie NeoCast: element robota humanoidalnego 
Surena4 (stop AZ91, masa 0.5 kg, wymiary: 50x15x10 
cm) (rys. 27a), felgi do pojazdów typu go-kart (masa 
0.5 kg, wymiary: 30x10x10 cm) (rys.27b), wirnik silnika 
do śmigłowca (stop RZ5, masa 3 kg, wymiary: 30x30x5 
cm) (rys.27c) oraz odlew obudowy silnika lotniczego 
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(stop AZ91, masa 3 kg, wymiary: 40x40x16 cm) (rys. 
27d).  Firma Thompson Aluminium Casting Co. za-
prezentowała unikatowy magnezowy odlew wirnika 
śmigłowca, chociaż jej możliwości wytwórcze jako 
jednego z głównych dostawców wyrobów ze stopów 
magnezu dla potrzeb wojsk lotniczych układu NATO  
i armii USA są znacznie większe (rys. 28).
Rozwój wysokotemperaturowej inżynierii cie-
kłego metalu
Na Wydziale Odlewnictwa AGH działa Laboratorium 
Inżynierii Ciekłego Metalu (LMELab – Liquid Metal En-
gineering Laboratory), powstałe wskutek utworzenia 
konsorcjum naukowo-badawczego przez AGH, Wy-
dział Odlewnictwa, z Instytutem Metalurgii i Inżynie-
rii Materiałowej PAN im. Aleksandra Krupkowskiego 
(IMIM PAN). W centrum zainteresowań naukowych 
LMELab są wysokotemperaturowe badania oddzia-
ływania wzajemnego w układzie ciekły (ciekło-stały) 
metal (stop)/ciało stałe. Badania pozwalają nie tyl-
ko na śledzenie kinetyki procesu zwilżania, ale także 
na identyfikacje faz i wydzieleń na granicy rozdziału 
materiałów. Dane, uzyskiwane na unikatowym, mo-
bilnym stanowisku badawczym są wprost niezbędne 
do modelowania, symulacji i opracowania nowych 
materiałów o zadanym poziomie właściwości, dobo-
rze stopów i materiałów pomocniczych do technolo-

gii wytwarzania odlewów, optymalizacji procesu czy 
precyzowania wytycznych materiałowo-konstrukcyj-
no-technologicznych we wszelkich procesach łącze-
nia (spawanie, lutowanie, technologie przyrostowe, 
zwłaszcza laser spark synthesis), w tym syntezy ma-
teriałów monolitycznych i funkcjonalnych gradialnie  
(w tym metalowych i ceramicznych materiałów kom-
pozytowych).
Autorskie urządzenie SMART (Special Device for Measu-
rements in Advanced Research at High Temperature),   
nagrodzone Złotym Medalem MTP ITM Industry Euro-
pe 2021, Modernlog w kategorii „Nauka dla Gospodarki”, 
składa się z następujących elementów: wysokotem-
peraturowej komory badawczej, zespołu kapilarnego 
dozowania ciekłego metalu (mechanizm kroplówki), 
komory załadowczej (do 6 próbek), manipulatora ko-
mory załadowczej (5-cio osiowego), analizatora gazów 

Rys. 26. Przedstawiciele Międzynarodowego Kon-
sorcjum Naukowo-Przemysłowego w trakcie trwania 
Międzynarodowego Salonu Przemysłu Obronnego 
w Kielcach, 2–4.09.2025. Od lewej dr Karol Janus 
(WO AGH), Paweł Darłak (właściciel NeoCast), Iwona 
Gruza (NeoCast), prof. Jerzy J. Sobczak (WO AGH)  
i Robert M. Purget (TAC)

Rys. 25. Kolaż zdjęć, ilustrujący zastosowanie odlewów w przemyśle 
obronnym na lądzie, na morzu i w powietrzu [29]

Rys. 27. Odlewy ze stopów magnezu przeznaczone dla przemysłu obronnego, wykonane w firmie NeoCast 
Technologie Metali Lekkich
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Rys. 28. Odlewy z nowoczesnych stopów magnezu, 
przeznaczone dla przemysłu obronnego Stanów 
Zjednoczonych oraz krajów paktu NATO (dzięki 
uprzejmości Thompson Aluminum Casting Co.)

Rys. 29. Widok ogólny mobilnego kompleksu badaw-
czego SMART w Laboratorium Inżynierii Ciekłego 
Metalu LMELab Wydziału Odlewnictwa AGH (Katedra 
Tworzyw Formierskich, Technologii Formy i Odlew-
nictwa Metali Nieżelaznych). Wersja z 2024 roku

Rys. 30. Kinetyka zwilżalności w układzie ciekły magnez/nikiel (poszczególne kadry z zapisu przebiegu 
procesu oddziaływania wzajemnego w temperaturze 760°C w czasie 30 s) (na podstawie [32]). Białe 
smugi na kroplą, szczególnie widoczne na kadrach (h) i (i) to pary magnezu 

resztkowych, kamer pomiarowych (w tym termowizyj-
nej), ruchomej platformy, systemu sterowania i rejestracji 
elektronicznej (rys. 29). Mobilne stanowisko do wyso-
kotemperaturowych badań właściwości ciekłych me-
tali, stopów, szkieł, żużli i innych substancji w szerokim 
zakresie temperatury topienia służy do wyznaczania ich 
charakterystyk oraz oddziaływania ciekłej materii z pod-
łożami stałymi. Stanowisko umożliwia prowadzenie ba-
dań w zakresie od temperatury pokojowej do 2100°C. 
Urządzenie wykonane zostało w technice wysokiej 
próżni i umożliwia pracę w zakresie od ciśnienia at-
mosferycznego do 10-7 mbar oraz w atmosferze gazów 
neutralnych (ochronnych) lub aktywnych. Po uzyska-
niu w komorze wysokiej próżni na poziomie 10-6 mbar 
możliwe jest uruchomienie procesu grzania podłoża  
i kroplówki do wymaganej temperatury eksperymen-
tu. Zachowanie i oddziaływanie stopionego materiału  

z podłożem obserwowane jest za pomocą szybkich ka-
mer usytuowanych w dwóch prostopadłych względem 
siebie kierunkach. Aparatura wyposażona jest w anali-
zator gazów resztkowych, umożliwiającego identyfika-
cję gazów wydzielających się w trakcie procesu grzania 
i oddziaływania wzajemnego w układzie ciecz/ciało 
stałe w wysokiej temperaturze. Istnieje możliwość roz-
dzielenie obszaru grzania kroplówki z obszarem grzania 
podłoża wraz z możliwością szybkiego wprowadzenia 
podłoża do obszaru badanego z obszaru o temperatu-
rze zbliżonej do temperatury pokojowej. Umożliwia to 
ulokowanie kropli ciekłego metalu na zimne podłoże, 
pozwalając tym sam na badanie procesów zbliżonych 
do warunków rzeczywistych, występujących w trakcie 
procesu odlewania.
W badaniach dokonuje się obserwacji i pomiarów  
w czasie rzeczywistym w atmosferze gazów lub w wy-

PRODUKCJA I TECHNIKA
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sokiej próżni, docelowo w temperaturze do 2100°C. 
Możliwa jest wizualizacja zjawisk interakcji w układach 
ciecz/ciało stałe/półstałe, rejestracja zjawisk w układach 
niereaktywnych i reaktywnych za pomocą wysokoroz-
dzielczych kamer monochromatycznych oraz kame-
ry termowizyjnej. Układ eksperymentalny (urządzenie  
i metoda badawcza) objęty jest europejską ochroną 
patentową. Mobilność aparatury umożliwia podjęcie 
badań in situ np. z zastosowaniem synchrotronu.
Możliwości badawcze stanowiska SMART obejmują 
metodę kropli leżącej, wiszącej, toczącej się (dzię-
ki zastosowaniu przechylnego stołu pomiarowego), 
metodę dużej kropli, łączenia wymienionych metod 
(do czterech w jednym cyklu pomiarowym), prowa-
dzenie pomiarów izotermicznych i nieizotermicznych, 
oczyszczanie kapilarne. Może zostać zastosowana 
procedura odsysania, przenoszenia, przechylania kro-

pli, synteza stopu in situ w trakcie badań i realizacja 
cykli grzania, wyznaczenie wysokotemperaturowych 
charakterystyk procesu oddziaływania wzajemnego: 
pomiary kąta Younga w funkcji czasu, napięcia po-
wierzchniowego, gęstości, lepkości, pracy adhezji, 
badanie procesów topnienia, krystalizacji, zwilżania, 
rozpływności (rozpływania się) i infiltracji, analiza ga-
zów resztkowych. 
Typowe przykłady kinetyki oddziaływania wzajemne-
go ciekłego magnezu z podłożami stałymi przedsta-
wiono na kolejnych rysunkach. 
W przypadku oczyszczania kapilarnego ciekłego me-
talu (zastosowanie tzw. procedury CP – capillarity puri-
fication), beztlenkowa kropla Mg wykazuje wystąpienie 
zjawiska zwilżania na podłożu Ni w czasie poniżej se-
kundy, po którym nastąpuje szybkie rozprzestrzenia-
nie się i dobre zwilżanie na podłożu niklowym (rys. 30) 
[31]. Analiza SEM/EDS przekroju poprzecznego pary 
Mg/Ni pozwala na stwierdzenie, że szybkie rozprze-
strzenianie się ciekłego Mg po podłożu Ni jest zwią-
zane z reaktywnym zwilżaniem, w którym dominującą 
rolę odgrywa mechanizm rozpuszczania. Powoduje to 
znaczące zmiany strukturalne po zestaleniu początko-
wo czystego Mg, który już podczas testu zwilżalności 

Rys. 32. Wykres równowagi fazowej układu Mg-Ni 
[33]

Rys. 33. Kinetyka zwilżalności w układzie ciekły magnez/stal AISI 316L (poszczególne kadry z zapi-
su przebiegu procesu oddziaływania wzajemnego w temperaturze 720°C w czasie 40 s). Zastoso-
wano metodę kropli leżącej wraz z procedura oczyszczania kapilarnego CP (na podstawie [34])

Rys. 31. Obrazy SEM przekroju poprzecznego pary 
Mg/Ni uzyskane metodą kropli leżącej z użyciem 
procedury CP (760°C; 30 s), wykonane detektorem 
BSE przy różnych powiększeniach: (a) widok ogólny 
(100x); (b, c) lewa i prawa krawędź; (d) granica roz-
działu (interface) w centralnej części kropli; (e) górna 
powierzchnia kropli; (b)-(e) powiększenie (1000x); (c) 
wstawiony obraz przedstawia powiększony fragment 
narożnika (c) pod powiększeniem 5000x

PRODUCTION & TECHNOLOGY
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Otrzymane wyniki pozostają w pełnej zgodności  
z wykresem równowagi fazowej układu Mg-Ni (rys. 32) 
według zasady bez reaktywności nie ma zwilżalności, 
a szerzej: w wysokotemperaturowych układach ciekło
-fazowych brak reaktywności pomiędzy kontaktującymi 
się materiałami — widoczny na wykresach równowagi 
fazowej - oznacza brak zwilżalności, a tym samym brak 
istotnego oddziaływania między składnikami układu. 
Przedstawione wyniki badań dobitnie pokazują, że 
czysty Ni i stopy bogate w Ni nie nadają się jako ma-
teriały do bezpośredniego długotrwałego kontaktu 
z ciekłym magnezem, w tym jako łyżki, tygle, kokile 
i na inne oprzyrządowanie metalurgiczne lub części 
aparatury i urządzeń stosowanych do wysokotempe-
raturowych badań ciekłego Mg i jego stopów. Wsze-
lako z drugiej strony, dobre zwilżanie i rozpływanie się 
ciekłego Mg na podłożu niklowym sugeruje, że Ni jest 
dobrym kandydatem do zastosowania jako pokrycie 
technologiczne w łączeniu Mg z różnymi materiałami 
niezwilżalnymi, a także w syntezie odlewanych kom-
pozytów magnezowych, materiałach wielowarstwo-
wych i innych układach heterogenicznych z udziałem 
magnezu.
W przypadku pary Mg/stal AISI 316L1/ zjawisko zwilżal-
ności i jakiekolwiek trwałe wiązanie z podłożem nie 
występują (rys. 33).
Stwierdzone zjawiska braku oddziaływania w układzie 
można przypisać niereaktywnemu charakterowi układu 
Mg-Fe ze względu na znikomą rozpuszczalność żelaza  
w ciekłym Mg i brak tworzenia jakichkolwiek produk-
tów reakcji międzyfazowej (rys.33 i 34). Podobne do 
omawianych, unikalne wyniki badań, dotyczące wy-
sokotemperaturowych właściwości magnezu w kon-
takcie ze stalą AISI 316L uzyskano także w przypadku 
podłoży z molibdenu i tantalu [34]. Mają zarówno 
znaczenie naukowe, jak i praktyczne, albowiem jed-
noznacznie sugerują perspektywiczne możliwości 
zastosowania tych materiałów na niezwilżalne oprzy-
rządowanie odlewnicze (łyżki, tygle, kokile) w przy-
padku pracy z ciekłym magnezem i jego stopami. 
Oprócz tego pomiary dostarczyły wiarygodne dane 
o właściwościach materiałowych, które mogą być 
wykorzystane przez sztuczną inteligencję do opra-
cowania nowych stopów na bazie Mg i procesów  
z udziałem magnezu.
Metodologia badań na opisanym kompleksie SMART 
to znakomite narzędzie do opracowania bądź opty-
malizacji procesów, m.in. doboru:
•	 pokrycia na robocze powierzchnie form do od-

lewania pod ciśnieniem, nowych tworzyw na 
odlewy, materiału form i rdzeni, szczególnie  
w przypadku nowych procesów z udziałem ciśnie-
nia zewnętrznego, takich jak rheocasting, thixoca-
sting i thixomoulding,

•	 materiału preform, wkładek, lokalnych struktur  
w przypadku materiałów heterogenicznych (kom-
pozytowych i funkcjonalnie gradialnych). 

Podsumowanie i wnioski końcowe
1.	 Wytwarzanie wyrobów w stanie ciekło-stałym 

(SSM), będący procesem z pogranicza odlewnictwa 

Rys. 34. Obrazy SEM/BSE przekroju pary Mg/AISI 
316L po teście zwilżalności w temperaturze 720°C 
w przepływającej mieszaninie Ar + 5 % mas. H2: (a) 
widok ogólny (powiększenie 50x); (b) górna część 
powierzchni kropli, (c, d) odpowiednio prawa i lewa 
krawędź kropli; (b-d) powiększenie 5000x; (e) widma 
EDS analizy punktowej zaznaczonej w (c)

Rys. 35. Wykres równowagi fazowej układu Fe-Mg [33]

tworzy złożoną strukturę zestaloną złożoną z bogatych  
w nikiel kryształów fazy MgNi

2
, otoczonej niewielką 

ilością eutektyki Mg
2
Ni + Mg i reaktywnie utworzonej 

międzyfazowej warstwy MgNi
2
. (rys. 31). Mamy więc 

tutaj do czynienia z reaktywnym zwilżaniem niklu 
przez ciekły magnez, co jest możliwe dzięki dwóm 
zachodzącym mechanizmom: rozpuszczaniu Ni  
w ciekłym Mg i tworzeniu nowych produktów reak-
cji i pojawieniem się nowych powierzchni rozdziału, 
jednak dominuje zwilżanie wskutek procesu rozpusz-
czania.
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i przeróbki plastycznej staje się coraz powszech-
niejszym sposobem otrzymywania precyzyjnych 
– near net shape –  bezporowatych wyrobów  
o wysokich parametrach użytkowych. Technologia 
SSM jest energooszczędna, proekologiczna i ra-
cjonalna ekonomicznie. 

2.	 SSM pozwalają na zastosowaniem stopów do 
przeróbki plastycznej oraz kompozytów odlewa-
nych w wytwarzaniu wysokojakościowych odle-
wów, głównie na bazie aluminium i magnezu.

3.	 Burzliwy rozwój filozofii megaodlewania (giga-
casting, hypercasting) pod ciśnieniem stopów 
aluminium i magnezu stał się faktem, również  
w odniesieniu do wariantu thixomolding w przy-
padku odlewów magnezowych.

4.	 Współczesne metody wysokotemperaturowej 
inżynierii ciekłego metalu pozwalają na dalsze 
doskonalenie technologii SSM i megaodlewania  
w kierunku dualnych sposobów wytwarzania (dual 
use methods) wyrobów monolitycznych i hetero-
genicznych (o wysokim kompleksie charakterystyk 
użytkowych, w tym także wyrobów kompozyto-
wych i struktur funkcjonalnie gradialnych – func-
tional graded structures).

Artykuł powstał na bazie prezentacji, wygłoszonej 
przez Jerzego J. Sobczaka w trakcie XVII Między-
narodowej Konferencji Naukowej „Innowacje w 
Odlewnictwie Ciśnieniowym” 19 maja 2025 roku w 
Gdańsku [3].
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